Single-view x-ray luminescence computed tomography (XLCT) imaging has short data collection time that allows non-invasively and fast resolving the three-dimensional (3-D) distribution of x-ray-excitable nanophosphors within small animal in vivo. However, the single-view reconstruction suffers from a severe ill-posed problem because only one angle data is used in the reconstruction. To alleviate the ill-posedness, in this paper, we propose a wavelet-based reconstruction approach, which is achieved by applying a wavelet transformation to the acquired singe-view measurements. To evaluate the performance of the proposed method, in vivo experiment was performed based on a cone beam XLCT imaging system. The experimental results demonstrate that the proposed method cannot only use the full set of measurements produced by CCD, but also accelerate image reconstruction while preserving the spatial resolution of the reconstruction. Hence, it is suitable for dynamic XLCT imaging study.