This Discussion Paper seeks to kill off probability summation, specifically the high-threshold assumption, as an explanatory idea in visual science. In combination with a Weibull function of a parameter of about 4, probability summation can accommodate, to within the limits of experimental error, the shape of the detectability function for contrast, the reduction in threshold that results from the combination of widely separated grating components, summation with respect to duration at threshold, and some instances, but not all, of spatial summation. But it has repeated difficulty with stimuli below threshold, because it denies the availability of input from such stimuli. All the phenomena listed above, and many more, can be accommodated equally accurately by signal-detection theory combined with an accelerated nonlinear transform of small, near-threshold, contrasts. This is illustrated with a transform that is the fourth power for the smallest contrasts, but tends to linear above threshold. Moreover, this particular transform can be derived from elementary properties of sensory neurons. Probability summation cannot be regarded as a special case of a more general theory, because it depends essentially on the 19th-century notion of a high fixed threshold. It is simply an obstruction to further progress.