Spillways are the most important structures of large dams that are responsible for releasing the excessive flood discharge from the reservoir. Although many studies have been performed to determine the flow characteristics over these structures, however, the available information on the shockwaves’ characteristics for spillways’ design is limited. The supercritical flow below the chute piers generates an aerated flow known as shockwaves. Due to the flow interaction with the chute piers, three kinds of standing waves just downstream of the pier, in the middle of the chute, and on the sidewalls are generated. This phenomenon affects the flow domain and its hydraulic characteristics along the chute spillway. The height of the waves increases downstream, where they hit the chute walls and reflect again into the flow to interact together again. The process repeated and intensified downstream in a lozenge shape. The height of these waves can be more than twice the depth flow and thus run over the sidewalls. This is important for the design of chute walls in chute spillways with control gates. In this study, the experimental formation of the shockwaves and their behavior along the chute and their reduction measures are presented. Experiments were conducted on a scaled physical model (1/50) of Kheirabad Dam, Water Research Institute, Iran. It was realized that apart from the geometry of piers and chute spillway, Froude number of flow and gate opening are the main effective parameters on the hydraulic performance of shockwaves’ formation and their development on gated spillways.