Peridynamics has a great advantage over modeling the damage process of rock-like materials, which is assumed to be in a continuum interaction with each other across a finite distance. In the paper, an approach to incorporate classical elastic damage model in the nonordinary, state-based peridynamics is introduced. This method can model the dynamic damage process and stress change of rock-like materials. Then two instances about three-point bend experiment are simulated in the rock-like materials. Finally the conclusions are drawn that numerical results are close to the experimental results. So the method has a great predictable value in the geotechnical engineering.
The debris flow is one of the geological hazards; its occurrence is complex, fuzzy, and random. And it is affected by many indices; a new multi-index assessment method is proposed to analyze the risk level of debris flow based on the entropy weight-normal cloud model in Banshanmen gully. The index weight is calculated by using the entropy weight method. Then, the certainty degree of each index belonging to the corresponding cloud is obtained by using the cloud model. The final risk level of debris flow is determined according to the synthetic certainty degree. The conclusions are drawn that the method is feasible and accurate rate of risk estimation for debris flow is very high, so a new method and thoughts for the risk assessment of debris flow can be provided in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.