Stilling basins can be defined as energy dissipaters constructed of the irrigation systems. This study aims at investigating the performance of the new seven baffle blocks design in terms of reducing the dimensions of stilling basins in irrigation systems. In order to assess the hydraulic efficiency of a new model for baffle block used in stilling basins, a Naval Research Laboratory (NRL) has conducted. The results of this study demonstrate that the performance of the new baffle block, in term of hydraulic jump length reduction and hydraulic energy dissipation, it's better than standard blocks. However, the ratios of the drag resistance attributed to the new baffles block (FB / F2) have been larger than that applied on the normal block. It was found that the new block dissipates the energy by 9.31% more than the concrete block, and decreases the length of the hydraulic jump by 38.6% in comparison with the standard blocks. However, the new block maximizes the drag force ratio by 98.6% in comparison with the standard baffle blocks. The findings indicated that in terms of energy reduction and dissipation in the length of the hydraulic jump, the new block is superior to the other kinds.
This study evaluates the water quality for the Canal of Shatt Al-Basrah, located in Basrah province, Iraq. The Shatt Al-Basrah Canal used to connect the waterway from Al-Hammar marshes in the north of Basrah province, to Khor Al-Zubair port in the south of the province. Nine physicochemical water quality parameters have been measured and analyzed for calculating the water pollution index (WPI) in the Canal. These parameters, which were used in developing the WPI, included: Potential of Hydrogen (pH), Nitrate (NO 3 -
Forecasting techniques are essential in the planning, design, and management of water resource systems. The numerical model introduced in this study turns governing differential equations into systems of linear or non-linear equations in the flow field, thereby revealing solutions. This one-dimensional hydrodynamic model represents the varied unsteady flow found in natural channels based on the Saint-Venant Equations. The model consists of the equations for the conservation of mass and momentum, which are recognized as very powerful mathematical tools for studying an important class of water resource problems. These problems are characterized by time dependence of flow and cover a wide range of phenomena. The formulations, held up by the four-point implicit finite difference scheme, solve the nonlinear system of equations using the Newton-Raphson iteration method with a modified Gaussian elimination technique. The model is calibrated using data on the Euphrates River during the early spring flood in 2015. It is verified by its application to an ideal canal and to the reach selected at the Euphrates River; this application is also used to predict the effect of hydraulic parameters on the river’s flow characteristics. A comparison between model results and field data indicates the feasibility of our technique and the accuracy of results (R2 = 0.997), meaning that the model is ready for future application whenever field observations are available.
When designing dam spillway structures, the most significant consideration is the energy dissipation arrangements. Different varieties of baffle blocks and stilling basins have been used in this context. However, the hydraulic jump form of stilling basin is considered to be the most suitable. The main objective of this research was to introduce four different baffle block shapes (models arranged from A to D, installed at slopes 0.00, 0.04, 0.06 and 0.08 in the stilling basins). To illustrate the consequences for the qualities of pressure-driven bounce, each model was attempted in the bowl. The trials applied Froude numbers between 6.5 and 9.2. The puzzle square model D provided the best outcomes compared to the models A, B, C and smooth. Model D with different models at inclines 0.00, 0.04, 0.06 and 0.08 was used to consider the impacts of perplex hinders on water driven-bounce when bed slants were changed. When the model D baffle used instead of a smooth bed at 0.08 slope, the reduction in y2 / y1 reached 12.8%, and Lj / y1 was 18.9%. Among the different bed slopes, a normal decrease in y2 / y1 ranged from approximately 10.3%, whereas the normal decrease in Lj / y1 was about 13.8% when the model D baffle was used instead of the model A baffle with a horizontal slope bed of 0.00. The results show that the new shapes led to a decrease in sequent profundity proportion and length of jump proportion; however, the energy dissipation proportion increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.