Background
Glucocorticoid resistance has been associated with Th17-driven inflammation, the mechanisms of which are not clear. We determined whether human and mouse Th17 cells are resistant to glucocorticoid-induced apoptosis.
Methods
Freshly isolated human blood Th17 cells and in vitro differentiated Th17 cells from IL-17F red fluorescent protein reporter mice were treated with dexamethasone, a potent glucocorticoid. Apoptosis was measured using annexin V and DAPI staining. Screening of apoptosis genes was performed using the apoptosis PCR array. Levels of molecules involved in apoptosis were measured using quantitative RT-PCR, flow cytometry, and Western blotting. Knockdown of BCL-2 in murine Th17 cells was performed via retroviral transduction. Cytokines were measured using ELISA. A murine Th17-driven severe asthma model was examined for Th17 glucocorticoid sensitivity in vivo.
Results
Human and mouse Th17 cells and mouse Th2 cells were resistant to glucocorticoid-induced apoptosis. Th17 cells had glucocorticoid receptors levels comparable to those in other T effectors cells. Th17 cells had high levels of BCL-2, knockdown of which sensitized Th17 cells to dexamethasone-induced apoptosis. Production of IL-22, but not IL-17A and IL-17F, was suppressed by glucocorticoids. STAT3 phosphorylation in Th17 cells was insensitive to glucocorticoid inhibition. Lung Th17 cells in the murine severe asthma model were enhanced, rather than suppressed, by glucocorticoids.
Conclusion
Th17 cells are resistant to glucocorticoid-induced apoptosis and cytokine suppression, at least in part due to high levels of BCL-2. These findings support a role of Th17 cells in glucocorticoid-resistant inflammatory conditions such as certain endotypes of asthma.