Abstract. Recent forest decline in Europe is strongly influenced by meteorological conditions imposed by seasonal variations of temperature, T2m, and precipitation, P, and can be monitored with forest greenness. This study quantitatively investigates anomalous characteristics of the three-year meteorological storyline preceding events of reduced forest greenness in Europe's temperate and Mediterranean biome in the phase space of seasonal-mean anomalies of (T2m, P). A specific focus is on the amplitude, persistence, and co-variability of these anomalies. A pragmatic approach based on remote sensing observations of normalized difference vegetation index NDVI serves to identify low forest NDVI events at the 50 km scale in Europe in June to August 2000–2020. An independent forest disturbance data set is used to qualitatively validate the identified more than 1'500 low NDVI events. These events occur in summers with particularly dry and hot conditions but their meteorological storylines feature significant anomalies during multiple seasons preceding the events, with clear differences between the two biomes. In the Mediterranean biome, the anomalously dry conditions persist over more than 1.5 y prior to the events, whereas T2m is anomalously warm only during the last 0.4 y. In contrast, in the temperate biome, T2m is anomalously large during most of the 2.5 y prior to the events and, most interestingly, the autumn/winter preceding the events is characterized by anomalously wet and warm conditions. These anomalies potentially induce a negative legacy on the following summer drought. The seasonal-mean anomalies of P are strongly determined by synoptic-scale weather systems, such that long dry periods are characterized by a deficit of cyclones and an excess of anticyclones. A final analysis investigates the peculiarities of low NDVI events that occur in two consecutive summers and the potential role of drought legacy effects. In the temperate biome, the second event summer of an event sequence has less hot and less dry anomalies than the first one and than during a single event. In summary, detailed investigations of the multi-annual meteorological storyline of low forest NDVI events provided clear evidence that anomalies of surface weather and synoptic-scale weather systems over time periods of up to 2.5 y can negatively impact European forest activity, with important differences between the temperate and Mediterranean biomes.