Our motivation is a mathematical model describing the spatial propagation of an epidemic disease through a population. In this model, the pathogen diversity is structured into two clusters and then the population is divided into eight classes which permits to distinguish between the infected/uninfected population with respect to clusters. In this paper, we prove the weak and the global existence results of the solutions for the considered reaction-diffusion system with Neumann boundary. Next, mathematical Turing formulation and numerical simulations are introduced to show the pattern formation for such systems.