2008
DOI: 10.1016/j.spl.2008.03.021
|View full text |Cite
|
Sign up to set email alerts
|

The functional central limit theorem for a family of GARCH observations with applications

Abstract: Please cite this article as: Berkes, I., Hörmann, S., Horváth, L., The functional central limit theorem for a family of GARCH observations with applications. Statistics and Probability Letters (2008Letters ( ), doi:10.1016Letters ( /j.spl.2008 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
21
0
1

Year Published

2010
2010
2017
2017

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 27 publications
(22 citation statements)
references
References 25 publications
0
21
0
1
Order By: Relevance
“…One may also extend the weak convergence result to linear processes with GARCH innovations by making use of the weak convergence result for GARCH processes; see Berkes, Hormann, and Horvath (2008). It is possible to extend the results to be developed in this paper to these other processes.…”
Section: New Unit Root Testsmentioning
confidence: 89%
“…One may also extend the weak convergence result to linear processes with GARCH innovations by making use of the weak convergence result for GARCH processes; see Berkes, Hormann, and Horvath (2008). It is possible to extend the results to be developed in this paper to these other processes.…”
Section: New Unit Root Testsmentioning
confidence: 89%
“…For simplicity, we consider here the case of an augmented GARCH(1,1) sequence (with double-struckS=R), defined by Yk=εkσk1,1emkZ with normalΛ()σk2=c()εknormalΛ()σk12+g()εk, where Λ(·), c (·) and g (·) are real‐valued measurable functions such that Λ −1 (·) exists. Extensions can be readily obtained by following Berkes and Hörmann ). Berkes and Hörmann (), Duan () gave necessary and sufficient conditions for the existence of a unique, strictly stationary solution of ( and .…”
Section: Examplesmentioning
confidence: 99%
“…La convergencia débil ha sido estudiada en investigaciones más recientes (Bradley, 2007;Dedecker et al, 2007;Wu, 2007), que en general hacen uso de las estimaciones de la varianza de largo plazo, como las descritas por Liu y Wu (2010). Las condiciones que garantizan la aplicación de estos resultados, en el caso de los segundos momentos, se pueden encontrar en Berkes et al (2008). Para el presente estudio, el estadístico de prueba fue calculado en 4.6945, a 1% de significancia se rechaza la hipótesis nula.…”
Section: Prueba De Quiebre Estructural En La Varianzaunclassified