2022
DOI: 10.1007/s00209-022-03142-0
|View full text |Cite
|
Sign up to set email alerts
|

The Hausdorff dimension of Julia sets of meromorphic functions in the Speiser class

Abstract: We show that for each $$d\in (0,2]$$ d ∈ ( 0 , 2 ] there exists a meromorphic function f such that the inverse function of f has three singularities and the Julia set of f has Hausdorff dimension d.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 52 publications
0
0
0
1
Order By: Relevance
“…再结 合 J(tan z) = R 和 Misiurewicz 的结果 J(e z ) = C [525] 可知, 有界型超越亚纯函数 Julia 集的 Hausdorff 维数可以取到区间 (0, 2] 中的任何值. Bergweiler 和崔巍巍 [80] 证明了对于任意 s ∈ (0, 2], 存在一个有 限型的超越亚纯函数 f (事实上仅有 3 个奇异值), 使得 dim H J(f ) = s. 对于有限型超越亚纯函数逃 逸集的 Hausdorff 维数研究可参见文献 [16,17].…”
Section: 超越unclassified
“…再结 合 J(tan z) = R 和 Misiurewicz 的结果 J(e z ) = C [525] 可知, 有界型超越亚纯函数 Julia 集的 Hausdorff 维数可以取到区间 (0, 2] 中的任何值. Bergweiler 和崔巍巍 [80] 证明了对于任意 s ∈ (0, 2], 存在一个有 限型的超越亚纯函数 f (事实上仅有 3 个奇异值), 使得 dim H J(f ) = s. 对于有限型超越亚纯函数逃 逸集的 Hausdorff 维数研究可参见文献 [16,17].…”
Section: 超越unclassified