1983
DOI: 10.1017/s0143385700001978
|View full text |Cite
|
Sign up to set email alerts
|

The C1 Closing Lemma, including Hamiltonians

Abstract: An Axiom of Lift for classes of dynamical systems is formulated. It is shown to imply the Closing Lemma. The Lift Axiom is then verified for dynamical systems ranging from C1 diffeomorphisms to C1 Hamiltonian vector fields.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
141
0
13

Year Published

1998
1998
2014
2014

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 202 publications
(154 citation statements)
references
References 16 publications
0
141
0
13
Order By: Relevance
“…The map f is transitive. Property 1 is a direct consequence of the C 1 closing lemma of Pugh and Robinson (see [20]). Properties 2 and 4 were proved by Robinson (see [22]).…”
Section: Some Generic Properties Of Symplectic Diffeomorphismsmentioning
confidence: 98%
“…The map f is transitive. Property 1 is a direct consequence of the C 1 closing lemma of Pugh and Robinson (see [20]). Properties 2 and 4 were proved by Robinson (see [22]).…”
Section: Some Generic Properties Of Symplectic Diffeomorphismsmentioning
confidence: 98%
“…The first is the celebrated Pugh's closing lemma [37 [4]. It states that the orbit of a non-wandering point can be approximated for a very long time by a closed orbit of a nearby Hamiltonian.…”
Section: Perturbation Lemmasmentioning
confidence: 99%
“…Si f est générique, on a≺ f =⊣ f d'après le théorème 6.3 ; ceci implique que f est un difféomorphisme transitif ; de plus, d'après [PR,R 1 ], ses points périodiques hyperboliques sont denses. D'après [Ar 1 , corollaire 19] dans le cadre conservatif (quand tous les points périodiques sont hyperboliques, voir [Ar 1 , paragraphe 1.5]), il existe une partie résiduelle de Diff 1 ω (M ) sur laquelle tout compact invariant transitif de M contenant un point périodique hyperbolique p est contenu dans la classe homocline de p. Ainsi, pour f ∈ Diff 1 ω (M ) générique (avec dim M ≥ 3), la variété M toute entière est incluse dans la classe homocline de chacune de ses orbites périodiques (qui sont toutes hyperboliques).…”
Section: Démonstrationunclassified