Starvation for amino acids induces Gcn4p, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. In an effort to identify all genes regulated by Gcn4p during amino acid starvation, we performed cDNA microarray analysis. Data from 21 pairs of hybridization experiments using two different strains derived from S288c revealed that more than 1,000 genes were induced, and a similar number were repressed, by a factor of 2 or more in response to histidine starvation imposed by 3-aminotriazole (3AT). Profiling of a gcn4⌬ strain and a constitutively induced mutant showed that Gcn4p is required for the full induction by 3AT of at least 539 genes, termed Gcn4p targets. Genes in every amino acid biosynthetic pathway except cysteine and genes encoding amino acid precursors, vitamin biosynthetic enzymes, peroxisomal components, mitochondrial carrier proteins, and autophagy proteins were all identified as Gcn4p targets. Unexpectedly, genes involved in amino acid biosynthesis represent only a quarter of the Gcn4p target genes. Gcn4p also activates genes involved in glycogen homeostasis, and mutant analysis showed that Gcn4p suppresses glycogen levels in amino acid-starved cells. Numerous genes encoding protein kinases and transcription factors were identified as targets, suggesting that Gcn4p is a master regulator of gene expression. Interestingly, expression profiles for 3AT and the alkylating agent methyl methanesulfonate (MMS) overlapped extensively, and MMS induced GCN4 translation. Thus, the broad transcriptional response evoked by Gcn4p is produced by diverse stress conditions. Finally, profiling of a gcn4⌬ mutant uncovered an alternative induction pathway operating at many Gcn4p target genes in histidine-starved cells.In response to environmental perturbations, Saccharomyces cerevisiae cells elicit rapid transcriptional reprogramming involving both activation and repression of gene expression. Transcriptional activator proteins function by binding to specific promoter elements, called upstream activating sequences (UASs) in yeast cells, and recruiting the transcriptional machinery. Thus, transcriptional stimulation requires the expression and function of an activator and the appropriate UAS element in the promoters of its target genes. A plethora of mechanisms are known to regulate the activity or expression of transcriptional activators in response to specific signals. For example, in cells grown on glucose, Gal80p inhibits the ability of Gal4p to activate transcription of genes encoding galactosemetabolizing enzymes, whereas Gal3p alleviates this inhibition on galactose medium (83). The transcriptional activators Pho4p, Swi5p, and Yap1p are regulated by the coupling of their nuclear localization to the levels of inorganic phosphate, cell cycle and mother-daughter status, or oxidative stress, respectively (reviewed in reference 52). Starvation for amino acids, purines, and glucose limitation induces the synthesis of Gcn4p, a bZIP transcriptional activator of amino acid biosynthetic gene...