Lipid systems, which provide valuable model systems for biological membranes, display a variety of polymorphic phases, depending on their molecular structure and environmental conditions. By use of X-ray and neutron diffraction the temperature-and pressure-dependent structure and phase behavior of lipid systems, differing in chain configuration and headgroup structure, have been studied. Besides lamellar phases also nonlamellar phases have been investigated. Hydrostatic pressure has been used as a physical parameter for studying the stability and energetics of lyotropic lipid mesophases, but also because high pressure is an important feature of certain natural membrane environments (e.g., marine biotopes) and because the high pressure phase behavior of biomolecules is of biotechnological interest (e.g., high pressure food processing). We demonstrate that temperature and pressure have noncongruent effects on the structural and phase behavior. By using the pressure-jump relaxation technique in combination with time-resolved synchrotron X-ray diffraction, the kinetics of different lipid phase transformations was also investigated. The time constants for completion of the transitions depend on the direction of the transition, the symmetry and topology of the structures involved, and also on the pressure-jump amplitude. In addition, the effect of incorporating ions, steroids and polypeptides into bilayers on the temperature-and pressure-dependent phase behavior of the lipid systems is discussed.