O cean turbulence influences the transport of heat, freshwater, dissolved gases such as CO 2 , pollutants, and other tracers. It is central to understanding ocean energetics and reducing uncertainties in global circulation and simulations from climate models. The dissipation of turbulent energy in stratified water results in irreversible diapycnal (across density surfaces) mixing. Recent work has shown that the spatial and temporal inhomogeneity in diapycnal mixing may play a critical role in a variety of climate phenomena. Hence, a quantitative understanding of the physics that drive the distribution of diapycnal mixing in the ocean interior is fundamental to understanding the ocean's role in climate.Diapycnal mixing is very difficult to accurately parameterize in numerical ocean models for two reasons. The first one is due to the discrete representation of tracer advection in directions that are not perfectly aligned with isopycnals, which can result in numerically induced mixing from truncation errors that is larger than observed diapycnal mixing (Griffies et al. 2000;Ilıcak et al. 2012). The second reason is related to the intermittency of turbulence, which is generated by complex and chaotic motions that span a large space-time range. Furthermore, this mixing is driven by a wide range of processes with distinct governing physics that create a rich global geography [see MacKinnon et al. (2013c) for a review]. The difficulty is also related to the relatively sparse direct sampling of ocean mixing, whereby sophisticated ship-based measurements are generally required to accurately characterize ocean mixing processes. Nonetheless, we have sufficient evidence from theory, process models, laboratory experiments, and field measurements to conclude that away from ocean boundaries (atmosphere, ice, or the solid ocean bottom), diapycnal mixing is largely related to the breaking of internal gravity waves, which have a complex dynamical underpinning and associated geography. The study summarizes recent advances in our understanding of internal wave-driven turbulent mixing in the ocean interior and introduces new parameterizations for global climate ocean models and their climate impacts.