We present an experimental study of the reversal of the large-scale circulation (LSC) in quasi-two-dimensional turbulent Rayleigh–Bénard convection. It is found that there exists a transition in the Rayleigh number ($Ra$) dependence of the reversal rate $f$ with two distinct scalings: for $Ra$ less than a transitional value $Ra_{t}$, the non-dimensionalized reversal rate $ft_{E}\sim Ra^{-1.09}$; however, for higher $Ra$ the scaling changes to $ft_{E}\sim Ra^{-3.06}$, where $t_{E}$ is the turnover time of the LSC. Flow visualization shows that this regime transition originates from a change in flow topology from a single-roll state to a new, less stable, abnormal single-roll state with substructures inside the single roll. The emergence of the substructures inside the LSC lowers the energy barrier for the flow reversals to occur and leads to a slower decay of $f$ with $Ra$. Detailed analysis reveals that, although it is the corner rolls that trigger the reversal event, the probability for the occurrence of reversals mainly depends on the stability of the LSC. This is supported by a model we proposed to predict the critical condition for the transition, which agrees well with the experimental results.
We report an experimental study of confinement effects in quasi-2-D turbulent Rayleigh-Bénard convection. The experiments were conducted in five rectangular cells with their height H and length L being the same and fixed, while the width W was different for each cell to produce lateral aspect ratios (Γ = W/H) of 0.6, 0.3, 0.2, 0.15 and 0.1. Direct flow field measurements reveal that the large-scale flow slows down as Γ decreases and there are more plumes travelling through the bulk region. Moreover, the reversal frequency of the large-scale flow is found to increase drastically in smaller Γ cells, by more than 1000-fold for the highest value of Rayleigh number reached in the experiment. The reversal frequency can be well described by a stochastic model developed by Ni et al. (J. Fluid Mech., vol. 778, 2015, R5) and the probability density functions (PDF) of the time interval between successive reversals are found to follow Poisson statistics as in the 3-D system. It is further observed that the bulk temperature fluctuation increases significantly and its PDF changes from exponential to Gaussian as Γ decreases. The influences of geometric confinement on the global heat transport are also investigated. The measured Nu-Ra relationship suggests that, as the lateral aspect ratio decreases, the relative weight of the boundary layer contribution in the global heat transport increases compared to that from the bulk. These results demonstrate that in the quasi-2-D geometry, geometric confinement has strong effects on both the global and local properties in turbulent convective flows, which are very different from the previous findings in 3-D and true 2-D systems.
The effects of insulating lids on the convection beneath were investigated experimentally using rectangular convection cells in the flux Rayleigh number range 2.3 × 10 9 Ra F 1.8 × 10 11 and cylindrical cells in the range 1.4 × 10 10 Ra F 1.2 × 10 12 with the Prandtl number Pr fixed at 4.3. It is found that the presence of the insulating lids leads to reduction of the global heat transfer efficiency as expected, which primarily depends on the insulating area but is insensitive to the detailed insulating patterns. At the leading order level, the magnitude of temperature fluctuation in the bulk fluid is, again, found to be insensitive to the insulating pattern and mainly depends on the insulating area; while the temperature probability density function (PDF) in the bulk is essentially invariant with respect to both insulating area and the spatial pattern of the lids. The flow dynamics, on the other hand, is sensitive to both the covering area and the spatial distribution of the lids. At fixed Ra F , the flow strength is found to increase with increasing insulating area so as to transfer the same amount of heat through a smaller cooling area. Moreover, for a constant insulating area, a symmetric insulating pattern results in a symmetric flow pattern, i.e. double-roll structure; whereas asymmetric insulating pattern leads to asymmetric flow, i.e. single-roll structure. It is further found that the symmetry breaking of the insulating pattern leads to a stronger flow that enhances the horizontal velocity more than the vertical one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.