We present a systematic investigation of the effects of roughness geometry on turbulent Rayleigh-Bénard convection (RBC) over rough plates with pyramid-shaped and periodically distributed roughness elements. Using a parameter λ defined as the height of a roughness element over its base width, the heat transport, the flow dynamics and local temperatures are measured for the Rayleigh number range 7.50×10 7 Ra 1.31×10 11 , and the Prandtl number P r from 3.57 to 23.34 at four values of λ (0.5, 1.0, 1.9, and 4.0). It is found that the heat transport scaling, i.e. N u ∼ Ra α where N u is the Nusselt number, may be classified into three regimes in turbulent RBC over rough plates. In Regime I, the system is in a dynamically smooth state. The heat transport scaling is the same as that in a smooth cell. In Regimes II and III, the heat transport enhances. When λ is increased from 0.5 to 4.0, α increases from 0.36 to 0.59 in Regime II, and it increases from 0.30 to 0.50 in Regime III. The experiment thus clearly demonstrates that the heat transport scaling in turbulent RBC can be manipulated using λ in the heat transport enhanced regime. Previous studies suggest that the transition to heat transport enhanced regime, i.e. from Regime I to Regime II, occurs when the thermal boundary layer (BL) thickness becomes smaller than the roughness height. Direct measurements of the viscous BL in the present study suggest that the transition from Regime II to Regime III is likely a result of the viscous BL thickness becoming smaller than the roughness height. The scaling exponent of the Reynolds number Re with respect to Ra changes from 0.471 to 0.551 when λ is increased from 0.5 to 4.0, suggesting a change of the dynamics of the large-scale circulation. Interestingly, the transition from Regime II to Regime III in terms of the heat transport scaling is not reflected in the Re-scaling with Ra. It is also found that increasing λ increases the clustering of thermal plumes which effectively increases the plumes lifetime. This leads to a great increase in the probability of observing large temperature fluctuations in the bulk flow, which corresponds to the formation of more coherent plumes or plume clusters that are ultimately responsible for the enhanced heat transport.
We report an experimental observation of a flow topology transition via global bifurcation in a turbulent Rayleigh-Bénard convection. This transition corresponds to a spontaneous symmetry breaking with the flow becomes more turbulent. Simultaneous measurements of the large-scale flow (LSF) structure and the heat transport show that the LSF bifurcates from a high heat transport efficiency quadrupole state to a less symmetric dipole state with a lower heat transport efficiency. In the transition zone, the system switches spontaneously and stochastically between the two long-lived metastable states.
We report experimental investigations of the dynamics of the large-scale circulation (LSC) in turbulent Rayleigh–Bénard convection at high Prandtl number $\mathit{Pr}= 19. 4$ (and also $\mathit{Pr}= 7. 8$) and Rayleigh number $\mathit{Ra}$ varying from $8. 3\times 1{0}^{8} $ to $2. 9\times 1{0}^{11} $ in a cylindrical convection cell with aspect ratio unity. The dynamics of the LSC is measured using the multithermal probe technique. Both the sinusoidal-fitting (SF) and the temperature-extrema-extraction (TEE) methods are used to analyse the properties of the LSC. It is found that the LSC in high-$\mathit{Pr}$ regime remains a single-roll structure. The azimuthal motion of the LSC is a diffusive process, which is the same as those for $\mathit{Pr}$ around 1. However, the azimuthal diffusion of the LSC, characterized by the angular speed $\Omega $ is almost two orders of magnitude smaller when compared with that in water. The non-dimensional time-averaged amplitude of the angular speed $\langle \vert \Omega \vert \rangle {T}_{d} $ (${T}_{d} = {L}^{2} / \kappa $ is the thermal diffusion time) of the LSC at the mid-height of the convection cell increases with $\mathit{Ra}$ as a power law, which is $\langle \vert \Omega \vert \rangle {T}_{d} \propto {\mathit{Ra}}^{0. 36\pm 0. 01} $. The $\mathit{Re}$ number based on the oscillation frequency of the LSC is found to scale with $\mathit{Ra}$ as $\mathit{Re}= 0. 13{\mathit{Ra}}^{0. 43\pm 0. 01} $. It is also found that the normalized flow strength $\langle \delta \rangle / \mrm{\Delta} T\times \mathit{Ra}/ \mathit{Pr}\propto {\mathit{Re}}^{1. 5\pm 0. 1} $, with the exponent in good agreement with that predicted by Brown & Ahlers (Phys. Fluids, vol. 20, 2008, p. 075101). A wealth of dynamical features of the LSC, such as the cessations, flow reversals, flow mode transitions, torsional and sloshing oscillations are observed in the high-$\mathit{Pr}$ regime as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.