Background: Studies have shown that the spherical shape of the lateral femoral condyle has a clear relationship with the relative axial movement of tibiofemoral joint and the anterior cruciate ligament (ACL) rupture. The purpose of this study was to describe the distal curvature of the lateral femoral condyle by ratio of height of lateral femoral condyle to anteroposterior diameter (HAPR), and evaluate its correlation with ACL rupture. Methods: A retrospective case-control study of 64 patients was conducted. Two age-and sex-matched cohorts (each n = 32) were analyzed: primary ACL ruptures, and a control group consisting of isolated meniscal tears. On the radiograph, the distance from the intersection of the axis of the distal femur and the anteriorly diameter of the lateral femoral condyle to the lower point of the lateral femoral condyle divided by the anteriorly diameter of the lateral femoral condyle is HAPR. The HAPR was measured by digital radiograph imaging systems (DR) to quantify femoral sphericity. Cutoff values were defined; and diagnostic performance of the risk factors was assessed. Meanwhile, we measured the posterior tibial slope (PTS) on radiograph and compared the two methods to evaluate the significance of HAPR in predicting ACL rupture. Results: A total of sixty-four patients who met the inclusion criteria were included in the final analysis (32 with primary ACL rupture, 32 controls). The HAPR was smaller in the knees with primary ACL rupture (0.31 ± 0.02) than that of the control group (0.33 ± 0.02) (p < 0.01). The PTS was bigger in the knees with primary ACL rupture (8.18 ± 2.77) than that of the control group (6.61 ± 2.85) (p = 0.036). The AUC of HAPR was bigger (0.825; 95% CI, 0.72-0.93) than that of PTS (0.675; 95%CI, 0.85-0.81). The calculated cutoff of HAPR of 0.32 (Youden index, 0.56) was associated with an increased risk for ACL rupture, with sensitivity of 75% and specificity of 81% to predict an ACL rupture. Conclusions: This study showed that a decreased HAPR is associated with an ACL rupture, and the decrease of HAPR was more significant in predicting ACL ruptures than the PTS. This helps clinicians identify susceptible individuals who may benefit from targeted ACL rupture prevention counseling and intervention.