1995
DOI: 10.1002/hyp.3360090204
|View full text |Cite
|
Sign up to set email alerts
|

The in(a/tan/β) index: How to calculate it and how to use it within the topmodel framework

Abstract: Topographic indices may be used to attempt to approximate the likely distribution of variable source areas within a catchment. One such index has been applied widely using the distribution function catchment model, TOPMODEL, of Beven and Kirkby (1979). Validation of the spatial predictions of TOPMODEL may be affected by the algorithm used to calculate the model's topographic index. A number of digital terrain analysis (DTA) methods are therefore described for use in calculating the TOPMODEL topographic index, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

8
402
0
26

Year Published

1997
1997
2012
2012

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 477 publications
(436 citation statements)
references
References 26 publications
8
402
0
26
Order By: Relevance
“…Examples in geomorphology include the topographic wetness index [18,19] and the stream power index [10].…”
Section: Describing Landscapes In Terms Of Surface Formmentioning
confidence: 99%
“…Examples in geomorphology include the topographic wetness index [18,19] and the stream power index [10].…”
Section: Describing Landscapes In Terms Of Surface Formmentioning
confidence: 99%
“…Subsequently, the TWI was calculated using ArcGIS [28] and SAGA GIS [29]. The computation included a fill operation and the use of a multiple flow direction algorithm (MFD) according to Quinn et al [30], [31]. This approach was recommended by Beven [2].…”
Section: Methodsmentioning
confidence: 99%
“…The catchment area per unit contour length was derived from this by applying a division by contour length. Contour lengths were computed l = 0.427 · resolution, where 0.427 is the mean of contour length for diagonal and cardinal neighbours [30], [31]. Gradient was computed by fitting a 2 nd degree polynomial [32].…”
Section: Methodsmentioning
confidence: 99%
“…Os índices topográficos primários (ITP) são calculados diretamente do MNE e representam as características básicas, como, por exemplo, declividade, aspecto e área acumulada; enquanto os índices topográficos secundários (ITS) são calculados por meio da combinação de dois ou mais índices primários e representam características mais complexas, como, por exemplo, umidade do solo ou potencial erosivo (MOORE et al, 1991). Eles são requeridos nos modelos ambientais como informação necessária para inúmeros procedimentos de cálculo, por exemplo, o uso do aspecto para o cálculo do balanço de energia, ou para representar processos de difícil medição, por exemplo, o uso da declividade e área acumulada para determinar as zonas de saturação de água na paisagem (RICHERSON & LUN, 1980;QUINN et al, 1995;2002). Os principais ITPs provenientes do MNE (Tabela 1) utilizados na modelagem matemática de inúmeros processos com aplicação no planejamento agrícola e ambiental são apresentados na tabela 1 (MOORE et al, 1991).…”
Section: Obtenção De íNdices Topográficos Primáriosunclassified