Mixed lubrication is a common lubrication regime in sliding contact and has received much attention in recent research. The influences of surface topography on friction performance in this lubrication state are significant owing to the coexistence of fluid–solid contact and solid–solid contact conditions. First, an accuracy surface model is built based on wavelet transform results. Then, the average Reynolds equation is revised for a grinding surface to be used in simulation. Third, four surface roughness parameters ( Sa, Sbi, S ci, and Svi) are selected to characterize surface topography. Additionally, the impacts on the solid–solid contact area, friction coefficient, and surface flattening are investigated. Finally, optimizations of surface roughness parameters directed toward energy saving and sliding stability are conducted and verified. Simulation and experiment methods are jointly applied to guarantee the accuracy of this research. The result of this study can provide theoretical support for machining contact surfaces.