Restricted Mean Survival Time ( R M S T ) experiences a renaissance and is advocated as a model-free, easy to interpret alternative to proportional hazards regression and hazard rates with implication in causal inference. Estimation of R M S T and associated variance is mainly done by numerical integration of Kaplan–Meier curves. In this paper we briefly review the two main alternatives to the Kaplan–Meier method; analysis based on pseudo-observations, and the flexible parametric survival method. Using computer simulations, we assess the efficacy of the three methods compared to a fully parametric approach where the distribution of survival times is known. Thereafter, the three methods are directly compared without any distributional assumption for the survival data. Generally, flexible parametric survival methods outperform both competitors, however the differences are small.