2019
DOI: 10.22146/ijccs.45093
|View full text |Cite
|
Sign up to set email alerts
|

The K-Means Clustering Algorithm With Semantic Similarity To Estimate The Cost of Hospitalization

Abstract: AbstrakBesar biaya rawat inap dari seorang pasien dapat diperkirakan dengan melakukan cluster pasien. Salah satu algoritme yang banyak digunakan untuk clustering adalah K-means. Algoritme K-means berbasiskan distance masih memiliki kelemahan dalam hal mengukur kedekatan makna atau semantik antar data. Untuk mengatasi permasalahan tersebut dapat digunakan semantic similarity untuk mengukur similaritas antar objek pada clustering sehingga kedekatan secara semantik dapat diperhitungkan. Penelitian ini bertujuan u… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
8
0
4

Year Published

2020
2020
2024
2024

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 12 publications
(12 citation statements)
references
References 4 publications
0
8
0
4
Order By: Relevance
“…The way of determining semantic similarity data is able to create higher quality results of clustering than without semantic similarity, depending on the experimental findings. The highest accuracy rate for all semantic similarity approaches is 91.78 percent, while the highest accuracy rate without semantic similarity is 84.93 percent [45].…”
Section: Literature Reviewmentioning
confidence: 94%
“…The way of determining semantic similarity data is able to create higher quality results of clustering than without semantic similarity, depending on the experimental findings. The highest accuracy rate for all semantic similarity approaches is 91.78 percent, while the highest accuracy rate without semantic similarity is 84.93 percent [45].…”
Section: Literature Reviewmentioning
confidence: 94%
“…The second category of work analysed,clustering-based, creates clusters that consist of semantically similar elements [9] [10] [11]. When a new data point has been detected, it is matched to the semantically closest cluster.…”
Section: Selected Semantic Matchmaking Approachesmentioning
confidence: 99%
“…The third approach relies on clustering, being based on the k-Means algorithm. k-Means is a well known clustering method that is also used in semantic matchmaking [11]. Clustering-based algorithms have the drawback that the total number of clusters to be considered need to be defined beforehand, so for a semantic matchmaking process it is necessary to assess how that number can be obtained.…”
Section: Selected Semantic Matchmaking Approachesmentioning
confidence: 99%
See 2 more Smart Citations