Melatonin treatment showed a potent neuroprotective action in experimental models and in clinical studies. However, the entire disease prevention is not observed with melatonin treatment. Therefore, findings have suggested its future use in combination therapies for neurological diseases. Several studies have showed its free radical scavenging, antioxidant property, antiapoptotic activity, and its action towards enhanced mitochondrial function. It has direct and indirect effects on mitochondrial functions. Neurodegenerative disease pathology includes the impaired mitochondrial functions and apoptotic death of neurons due to energy crisis which could be prevented with antiapoptotic activity of melatonin. However, for the therapeutic use of melatonin, researchers also need to pay attention towards the various intermediary events taking place in apoptotic death of neurons during disease pathology. Age-related neurological diseases include the decreased level of melatonin in neuronal death. Therefore, it is worthwhile to discuss about the different functions of melatonin in aspect of its antioxidative property, its role in the enhancement of mitochondrial function, and its antiapoptotic attributes. This review summarizes the reports to date showing the potent role of melatonin in experimental models and clinical trials and discussing the employment of melatonin as future potent neuroprotective agent.