.
66, 2894 (1988).A reformulation of the Sinanoglu-Reisse semi-empirical approach to describe the cavity formation process in liquids is proposed. The energy of cavity formation is regarded as a strictly potential energy corrected for short range order effects in the liquid state. Deviations from the Corresponding States Principle quantified by the Pitzer acentric factor are considered to describe these short range order effects.The influence of the cavity shape on the calculation of its energetics is emphasized as well as the need for a realistic description of the dependence of the microscopic surface tension on the size and shape of the cavities. The proposed method is successfully applied to binary mixtures of n-alkanes at infinite dilution.
66, 2894 (1988).On propose une nouvelle formulation de l'approche semi-empirique de Sinanoglu-Reisse pour dCcrire le processus de formation de cavitCs dans des liquides. L'Cnergie de formation de la cavitC est considtrte strictement comme une Cnergie potentielle corrigCe pour les effets d'ordre a courte distance dans I'Ctat liquide. Les dCviations par rapport au Principe des Etats Correspondants sont quantifiCes par le facteur acentrique de Pitzer et sont utilisCes sous cette forme pour dCcrire ces effets d'ordre a courte distance.On dCmontre l'importance de la forme de la cavitC sur le calcul de son Cnergie ainsi que la nCcessitC de possCder une description rkaliste de la relation entre la tension superficielle microscopique et la taille et la forme des cavitCs. La mCthode proposCe a Ct C appliquCe avec succes a I'Ctude de mklanges binaires de 11-alcanes a dilution infinie.[Traduit par la revue]The importance of the energetics of cavity formation to elucidate the solvent effect on chemical processes has been strongly emphasized ( 1-3). The thermodynamic parameters AX associated with a chemical process A + B at infinite dilution are, in principle, solvent dependent andwe may write AXo = XBO -XAO in the solvent So and AX = XB -XA in the solvent SL The _X are partial molar quant~ies atinfinite dilution:The operators 6 (solvent effect) and A (process) are thus permutable (4). Equation [ I ] shows the relationship which exists between the solvent effect on AX and the thermodynamic transfer quantities SX, and is at the origin of a generalised use of these transfer quantities in order t_o interpret the observed solvent effects (5-7). Nevertheless, SX are complex quantities, which reflect both solute-solvent and solvent-solvent interactions. To obtain information about the molecular structure of a solute it would be necessary to accede directly to the solute-solvent interaction and this is an important point when solvent effect studies are carried on in order to characterise short-lived species like electronic excited states or transition states.The thermodynamic quantity S F A for the transfer of a solute A from one solvent, So, to another, S, at infinite dilution, may '~u t h o r to whom correspondence should be addressed.be described as a sum of at least two terms2 sXA = (6...