Appropriate computational techniques show great promise in simulating the haemodynamic behaviour of the various stages in coil embolisation and may be a potentially valuable tool in interventional planning and procedural decision-making.
This paper proposes a novel computational methodology for modelling the haemodynamic effects of endovascular coil embolization for cerebral aneurysms. We employ high-resolution 3-D angiographic data to reconstruct the intracranial geometry and we model the coiled part of the aneurysm as a porous medium, with porosity decreasing as coils are inserted. The actual dimensions of the coils employed are used to determine the characteristics of the porous medium. Simulation results for saccular aneurysms from the anterior communicating and middle cerebral arteries show that insertion of coils rapidly changes intraaneurysmal blood flow and causes reduction in mural pressure and blood velocity up to stagnation, providing favorable conditions for thrombus formation and obliteration of the aneurysm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.