A review on theMosources available today and on theTcgenerators developed up to date for increasing the effectiveness ofMoutilisation is performed in the format of detailed description of the features and technical performance of the technological groups of theMoproduction andTcrecovery. The latest results of the endeavour in this field are also surveyed in regard of the technical solution for overcoming the shortage ofMosupply. The technological topics are grouped and discussed in a way to reflect the similarity in the technological process of each group. The following groups are included in this review which are high specific activityMo: the current issues of production, the efforts of more effective utilisation, and the high specific activityMo-basedTcgenerator andTcconcentration units; low specific activityMo: theMoproduction based on neutron capture and accelerators and the direct production ofTcand the methods of increasing the specific activity ofMousing Szilard-Chalmers reaction and high electric power isotopic separator; up-to-date technologies ofTcrecovery from low specific activityMo: the solvent extraction-basedTcgenerator, the sublimation methods forMo/Tcseparation, the electrochemical method forTcrecovery, and the column chromatographic methods forTcrecovery. Besides the traditionalTc-generator systems, the integratedTcgenerator systems (Tcgenerator column combined with postelution purification/concentration unit) are discussed with the format of process diagram and picture of real generator systems. These systems are the technetium selective sorbent column-based generators, the high Mo-loading capacity column-based integratedTcgenerator systems which include the saline-eluted generator systems, and the nonsaline aqueous and organic solvent eluent-eluted generator systems using high Mo-loading capacity molybdategel and recently developed sorbent columns.Tcconcentration methods used in theTcrecovery from low specific activityMoare also discussed with detailed process diagrams which are surveyed in two groups forTcconcentration from the saline and nonsalineTc-eluates. The evaluation methods for the performance ofTc-recovery/concentration process and for theTc-elution capability versus Mo-loading capacity of generator column produced using low specific activityMosource are briefly reported. Together with the theoretical aspects ofTc/Moand sorbent chemistry, these evaluation/assessment processes will be useful for any further development in the field of theTcrecovery andMo/Tcgenerator production.