In recent decades, investigations on bacteria-derived materials have progressed from being a proof of concept to a means for improving traditional biomaterials. Owing to their unique characteristics, such as gene manipulation, rapid proliferation, and specific targeting, bacteria-derived materials have provided remarkable flexibility in applied biomedical functionalization. In this review, bacteria-derived nanoparticles are focused on as a promising biomaterial, introducing several bacterial species with great potential and useful strategies for fabrication. Through well-designed choices, bacteria-derived nanoparticles can be exploited to obtain functional bacteria-mimicking materials for a variety of applications, including cargo delivery, imaging, therapy, and immune modulation. Finally, the prospects and challenges of bacteria-derived nanoparticles are discussed. Particularly, safety concerns regarding the use of bacteria and their immunogenicity remain major obstacles to the clinical application of bacteria-derived nanoparticles and these concerns are immediate priorities for the research community.