ABSTRACT:Two experiments were conducted to evaluate potential detoxifying agents on growth of nursery pigs fed deoxynivalenol (DON)-contaminated diets. Naturally DON-contaminated wheat (6 mg/kg) was used to achieve desired DON levels. In a 21-d study, 238 pigs (13.4 ± 1.8 kg BW) were used in a completely randomized design with a 2 × 2 + 1 factorial arrangement. Diets were: 1) Positive control (PC; < 0.5 mg/kg DON), 2) PC + 1.0% Product V (Nutriquest LLC, Mason City, IA), 3) Negative control (NC; 4.0 mg/kg DON), 4) NC + 1.0% Product V, and 5) NC + 1.0% sodium metabisulfite (SMB; Samirian Chemicals, Campbell, CA). There were 6 or 7 replicate pens/treatment and 7 pigs/pen. Analyzed DON was decreased by 92% when pelleted with SMB, but otherwise matched formulated levels. Overall, a DON × Product V interaction was observed for ADG (P < 0.05) with a tendency for an interaction for ADFI (P < 0.10). As anticipated, DON reduced (P < 0.001) ADG and ADFI, but the interaction was driven by even poorer growth when Product V was added to NC diets. Pigs fed NC diets had 10% poorer G:F (P < 0.001) than PC-fed pigs. Reductions in ADG due to DON were most distinct (50%) during the initial period. Adding SMB to NC diets improved (P < 0.01) ADG, ADFI, and G:F, and improved (P < 0.02) ADG and G:F compared to the PC diet. A urinary balance study was conducted using diets 3 to 5 from Exp. 1 to evaluate Product V and SMB on DON urinary metabolism. A 10 d adaptation was followed by a 7 d collection using 24 barrows in a randomized complete block design. Pigs fed NC + SMB diet had greater urinary DON output (P < 0.05) than pigs fed NC + Product V, with NC pigs intermediate. Daily DON excretion was lowest (P < 0.05) in the NC + SMB pigs. However, degradation of DON-sulfonate back to the parent DON molecule was observed as pigs fed NC + SMB excreted more DON than they consumed (164% of daily DON intake), greater (P < 0.001) than pigs fed the NC (59%) or NC + Product V (48%). Overall, Product V did not alleviate DON effects on growth nor did it reduce DON absorption and excretion. However, hydrothermally processing DON-contaminated diets with 1.0% SMB restored ADFI and improved G:F. Even so, the urinary balance experiment revealed that some of the converted DON-sulfonate can degrade back to DON under physiological conditions. While further research is needed to discern the stability of the DON-sulfonate, SMB appears promising to restore performance in pelleted DON-contaminated diets.