Semi-crystalline polymers can be deformed up to a very high strain. The deformation process involves frequently a complete molecular rearrangement of the chain-folded lamellar morphology into a more or less chain-unfolded fibrillar microstructure. This transformation is likely to occur through an intermediate state of high molecular disorder at a local scale. It led to the formulation of a concept of strain-induced melting-recrystallization process as a main mechanism of the structure transformation. In contrast, several structural features occurring at moderate plastic strains are relevant to strictly crystallographic processes. The plastic deformation process of semicrystalline polymers and the micromechanisms involved are discussed. A critical discussion of experimental findings is made to point out the strength or the deficiency of the various argumentations. It is demonstrated that the crystallographic slip mechanisms, including slips: transverse and along the chains are the basic deformation mechanisms in the deformation sequence, active at all strain levels. Direct microscopic evidence of chain slip activity even at well advanced stages of the deformation process is presented. In contrary, the meltingrecrystallization seems to be restricted to the high-strain stage accompanied by chain unfolding and perhaps limited to only a small fraction of the crystalline phase. In addition the experimental results demonstrates clearly that the cavitation, necessary in the Peterlin's model, is really unessential in producing high deformation and appearance of the final highly oriented structure. This can be effectively accomplished with only crystallographic mechanisms employed. A very important role in the deformation sequence is played by the partially reversible shear deformation of amorphous interlamellar layers, producing not only high orientation of amorphous component but also influencing deeply the deformation of crystalline phase, since both phases are strongly connected and must deform simultaneously and consistently.