In this study, a series of new metal phthalocyanines with imidazole function MPc(Imz) (M: Cd, Hg, Zn and Pd) were synthesized to improve the photocatalyst performances. All physical properties such as total energy, HOMO, LUMO energies of MPc(Imz), as well as their vibrational frequencies have been determined by DFT method using B3LYP theory level at 6-311G (d, p) and sdd basis set. The gap of energy level between work function (WF) of ITO and LUMO of PdPc(Imdz) was 1.53 eV and represents the highest barrier beneficial to electron injection compared to WF of ZnPc(Imz), HgPc(Imz), and CdPc(Imz). Furthermore, the PdPc(Imdz) thin films on indium tin oxide (ITO) glass were prepared by spin coating and vacuum evaporation technique, and were characterized by X-ray diffraction (XRD), surface electron morphology (SEM), atomic force microscopy (AFM), and UV–Vis spectroscopy. The photocatalytic activity of the ITO/glass supported thin films and degradation rates of chlorinated phenols in synthetic seawater, under visible light irradiation were optimized to achieve conversions of 80–90%. Experiments on synthetic seawater samples showed that the chloride-specific increase in photodegradation could be attributed to photochemically generated chloride radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet PdPc(Imz) (3PdPc(Imz)*), reactive oxygen species]. The major 2,3,4,5-Tetrachlorophenol degradation intermediates identified by gas chromatography-mass spectrometry (GC/MS) were 2,3,5-Trichlorophenol, 3,5-dichlorophenol, dichlorodihydroxy-benzene and 3,4,5-trichlorocatechol.