Ballistocardiography (BCG) studies ballistic forces on the body generated during a heartbeat. As it is an unobtrusive detection method, that requires sensors measuring small dynamic forces. Piezoelectric sensors are ideal, but improvements in sensitivity are needed. Here, a universal method is demonstrated to obtain enhanced effective transverse charge constants by utilizing thin and long sensors fabricated upon compliant substrates. This approach is validated using the uniquely printable and patternable piezoelectric polymer, poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE). Discrete sensors detect displacements of less than 1 µm, dynamic forces of ∼mN, and accelerations of ≈1 mm−1 s2. Since the sensor is screen‐printable, it is upscaled to a human‐sized array (60 × 90 cm, 255 sensors). High quality spatially resolved BCG measurements of a person is demonstrated in seated and supine positions. The obtained heart rate is verified using photoplethysmography. This development opens the door to ever‐more sensitive piezoelectric sensors, crucial for applications including and beyond healthcare.