Cyclic degradation in flexible electronic inks remains a key challenge while their deployment in life critical applications is ongoing. The origin of electrical degradation of a screen-printed stretchable conductive ink with silver flakes embedded in a polyurethane binder is investigated under uniaxial monotonic and cyclic stretching, using in-situ confocal microscopy and scanning electron microscopy (SEM) experiments, for varying ink thickness (1, 2, and 3 layers, each layer around 8-10 µm) and trace width (0.5, 1, and 2 mm). Cracks form under monotonic stretching, and the evolution of crack pattern (density, length and width) with applied strain is affected by ink thickness such that the 3-layer ink exhibit larger normalized resistance but slightly lower resistance than the 1-layer ink up to strains of 125%. For cyclic stretching, the crack density and length do not evolve with cycling. However, the cracks widen and deepen, leading to an increase in resistance with cycling. However, the cracks widen and deepen, leading to an increase in resistance with cycling. There exists a strong correlation between fatigue life as defined by the number of cycles until a normalized resistance of 100 is reached, and the strain amplitude. The normalized resistance increase rate with respect to cycling is also found to scale with strain amplitude. The rate of change in resistance with cycling decreases with ink thickness and trace width. For practical applications, thicker (≥25 µm) and wider (≥2 mm) inks should be used to lower resistance increases with repeated deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.