This Letter presents a quantitative in situ scanning electron microscope (SEM) nanoscale high and very high cycle fatigue (HCF/VHCF) investigation of Ni microbeams under bending, using a MEMS microresonator as an integrated testing machine. The novel technique highlights ultraslow fatigue crack growth (average values down to ∼10 m/cycle) that has heretofore not been reported and that indicates a discontinuous process; it also reveals strong environmental effects on fatigue lives that are 3 orders of magnitude longer in a vacuum than in air. This ultraslow fatigue regime does not follow the well documented fatigue mechanisms that rely on the common crack tip stress intensification, mediated by dislocation emission and associated with much larger crack growth rates. Instead, our study reveals fatigue nucleation and propagation mechanisms that mainly result from room temperature void formation based on vacancy condensation processes that are strongly affected by oxygen. This study therefore shows significant size effects governing the bending high/very high cycle fatigue behavior of metals at the micro- and nanoscales, whereby the stress concentration effect at the tip of a growing small fatigue crack is assumed to be greatly reduced by the effect of the bending-induced extreme stress gradients, which prevents any significant cyclic crack tip opening displacement. In this scenario, ultraslow processes relying on vacancy formation at the subsurface or in the vicinity of a crack tip and subsequent condensation into voids become the dominant fatigue mechanisms.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.