We present the WarpEngine, an architecture designed for realtime image-based rendering of natural scenes from arbitrary viewpoints. The modeling primitives are real-world images with per-pixel depth. Currently they are acquired and stored off-line; in the near future real-time depth-image acquisition will be possible, and WarpEngine is designed to render in immediate mode from such data sources. The depth-image resolution is locally adapted by interpolation to match the resolution of the output image. 3D warping can occur either before or after the interpolation; the resulting warped/interpolated samples are forward-mapped into a warp buffer, with the precise locations recorded using an offset. Warping processors are integrated on-chip with the warp buffer, allowing efficient, scalable implementation of very high performance systems. Each chip will be able to process 100 million samples per second and provide 4.8GigaBytes per second of bandwidth to the warp buffer. The WarpEngine is significantly less complex than our previous efforts, incorporating only a single ASIC design. Small configurations can be packaged as a PC add-in card, while larger deskside configurations will provide HDTV resolutions at 50 Hz, enabling radical new applications such as 3D television.WarpEngine will be highly programmable, facilitating use as a test-bed for experimental IBR algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.