2020
DOI: 10.1016/j.actamat.2019.10.044
|View full text |Cite
|
Sign up to set email alerts
|

The significance of spatial length scales and solute segregation in strengthening rapid solidification microstructures of 316L stainless steel

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
25
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 126 publications
(36 citation statements)
references
References 49 publications
2
25
0
1
Order By: Relevance
“…All the microstructural features are indicated in Figure 1. Such microstruc ture is typical for many alloys prepared by SLM [30][31][32]. The morphology of columna grains is related to the epitaxial growth of grains from the previously solidified layer.…”
Section: Initial Microstructurementioning
confidence: 89%
“…All the microstructural features are indicated in Figure 1. Such microstruc ture is typical for many alloys prepared by SLM [30][31][32]. The morphology of columna grains is related to the epitaxial growth of grains from the previously solidified layer.…”
Section: Initial Microstructurementioning
confidence: 89%
“…Основной вывод, который следует из прямого численного моделирования EFKP-модели, состоит в том, что модель имеет ряд преимуществ как по сравнению с предшествующими фазово-полевыми моделями затвердевания [25][26][27][28], которые до сих пор используются для изучения микроструктуры материалов [39,40], так и по сравнению с новыми моделями [7][8][9]. Во-первых, по сравнению с известной моделью Уилера−Беттингера−Макфаддена [25,26] наблюдается более правильное поведение коэффициента распределения, хотя EFKP-модель тоже нуждается в доопределении, позволяющем решить проблему с возникновением k(V ) > 1.…”
Section: выводыunclassified
“…Furthermore, each rapid heating-cooling cycle occurs in a small local volume of the material which can induce an intense thermal stress field. This can result in a high-density dislocation network, often with a well-developed cellular structure [4][5][6][7]. The as-built 316L SS, therefore, shows a unique mechanical behavior that differs from those of annealed austenitic SSs.…”
Section: Temperature Dependence Of Strengthmentioning
confidence: 99%
“…Austenitic SSs like grade 316L SS processed using conventional metallurgical techniques are widely used in nuclear power plants because they provide a good combination of strength, ductility, and corrosion resistance. Additive manufacturing of such alloys has also been studied extensively in recent years for application to nuclear reactor components; it has been observed to have increased room temperature (RT) yield strength but less work hardening due to a characteristic microstructure of fine grains and dislocation cells formed during the localized rapid solidification [4][5][6][7]. On the other hand, the fracture toughness of AM 316L SS could be negatively affected by the increased porosity from the build process, structural anisotropy relative to the build direction, and inclusions from impurities in the feedstock powder [2,8].…”
Section: Introduction 11 Backgroundmentioning
confidence: 99%