Introduction
Implant stability is influenced by bone density, implant design, and site preparation characteristics. Piezoelectric implant site preparation (PISP) has been demonstrated to improve secondary stability compared with conventional drilling techniques. Osseodensification drills (OD) have been recently introduced to enhance both bone density and implant secondary stability. The objective of the present multi‐center prospective randomized controlled trial was to monitor implant stability changes over the first 90 days of healing after implant bed preparation with OD or PISP.
Methods
Each patient received two identical, adjacent or contralateral implants in the posterior maxilla. Following randomization, test sites were prepared with OD and control sites with PISP. Resonance frequency analysis was performed immediately after implant placement and after 7, 14, 21, 28, 60, and 90 days. Implants were then restored with single screw‐retained metal‐ceramic crowns and followed for 12 months after loading.
Results
Twenty‐seven patients (15 males and 12 females; mean age 63.0 ± 11.8 years) were included in final analysis. Each patient received two identical implants in the posterior maxilla (total = 54 implants). After 1 year of loading, 53 implants were satisfactorily in function (one failure in test group 28 days after placement). Mean peak insertion torque (40.7 ± 12.3 Ncm and 39.5 ± 10.2 Ncm in test and control group, respectively) and mean implant stability quotient (ISQ) value at baseline (71.3 ± 6.9 and 69.3 ± 7.6 in test and control group, respectively) showed no significant differences between the two groups. After an initial slight stability decrease, a shift to increasing ISQ values occurred after 14 days in control group and after 21 days in test group, but with no significant differences in ISQ values between the two groups during the first 90 days of healing.
Conclusion
No significant differences in either primary or secondary stability or implant survival rate after 1 year of loading were demonstrated between implants inserted into sites prepared with OD and PISP.