One of the major concerns of pipe equipment used for oil, gas and nuclear power generation, is their failure due to corrosion and abrasion of their inner walls. However, current methods have some problems detecting the inner wall of long and deep pipes, which has become an urgent safety problem. In this paper, we have designed and tested a suitable scanning and imaging method that offers high quality imaging, high efficiency and low cost. We applied the technique on remanufactured ceramic-lined steel composite pipe parts using a 4-module visualization nondestructive testing device. Digital signal and imaging algorithms were employed to superimpose multi-interface images to reconstruct 3D models of tested pipes with defects. Our findings suggest that ultrasonic scanning technique is feasible to analyze inner wall damages. The newly-designed hardware and software system shows efficiency and effectivity in the testing experiments on specimens with artificial markers and defects.