A B S T R A C T Autoantibodies to the insulin receptor have been detected in the sera of several patients with the Type B syndrome of insulin resistance and acanthosis nigricans. In this study we have used three of these sera (B-1, B-2, and B-3) as probes ofthe insulin receptor in isolated rat adipocytes. Preincubation of adipocytes with each of the three sera resulted in an inhibition of subsequent [1251]insulin binding. 50% inhibition of binding occurred with serum dilutions of 1:5 to 1:7,500. As in our previous studies with other tissues, Scatchard analysis of the insulin-binding data was curvilinear consistent with negative cooperativity. Computer analysis suggested that in each case the inhibition of binding was due to a decrease in receptor affinity rather than a change in available receptor number.In addition to the effects on insulin binding, adipocytes pretreated with antireceptor sera also showed alterations in biological responses. All three sera produced some stimulation of basal glucose oxidation. With serum B-3, maximal stimulation of glucose oxidation occurred at a serum concentration that inhibited binding by only 10-15%, whereas with serum B-2 the dilution curves for inhibition of binding and stimulation of glucose oxidation were superimposable. Serum B-1 behaved as a partial agonist; that is, it inhibited binding more effectively than it stimulated glucose oxidation. Cells pretreated with this serum in a concentration which inhibited binding by 80% also showed a five-fold shift to the right in the dose response of insulin-stimulated glucose oxidation, whereas sperminestimulated glucose oxidation was unaffected. Serum B-2, which contained the highest titer of antireceptor