A holistic-modular approach has been taken to study the evolution of three straight to low-sinuosity drainage systems (=SSS) in an uplifted basement block of the Central European Variscides. The development of the SSS is described by means of a quadripartite model. (1) The geological framework of the SSS: Forming the lithological and structural features in the bedrock as a result of different temperature, pressure and dynamic-metamorphic processes. (2) Prestage of SSS: Forming the paleo-landscape with a stable fluvial regime as a starting point for the SSS. (3) Proto-SSS: Transition into the metastable fluvial regime of the SSS. (4) Modern SSS: Operation of the metastable fluvial regime Tectonics plays a dual role. Late Paleozoic fold tectonic creates the basis for the studied SSS and has a guiding effect on the development of morphotectonic units during the Neogene and Quaternary. Late Cenozoic fault tectonics triggered the SSS to incise into the Paleozoic basement. The change in the bedrock lithology has an impact on the fluvial and colluvial sediments as well as their landforms. The latter reflects a conspicuous modification: straight drainage system ⇒ higher sinuosity and paired terraces ⇒ hillwash plains. Climate change has an indirect effect controlling via the bedrock the intensity of mechanical and chemical weathering. The impact on the development of the SSS can be assessed as follows: Tectonics >> climate ≅ bedrock lithology. The three parameters cause a facies zonation: (1) wide-and-shallow valley (Miocene), (2) wide-angle V-shaped valley (Plio-Pleistocene), (3) acute-angle V-shaped valley (Pleistocene), (4) V-shaped to U-shaped valleys (Pleistocene-Holocene). Numerical data relevant for the hydrographic studies of the SSS are determined in each reference area: (1) Quantification of fluvial and colluvial deposits along the drainage system, (2) slope angles, (3) degree of sinuosity as a function of river facies, (4) grain size distribution, (5) grain morphological categorization, (6) grain orientation (“situmetry”), (7) channel density, (8) channel/floodplain ratios. Thermodynamic computations (Eh, pH, concentration of solubles) are made to constrain the paleoclimatic regime during formation of the SSS. The current model of the SSS is restricted in its application to the basement of the Variscan-Type orogens, to an intermediate crustal maturity state.