In order to further improve ssDNA sequencing performances using quasi-interpenetrating network (quasi-IPN) as a matrix composed of linear polyacrylamide (LPA) with lower viscosity-average molecular mass (3.3 MDa) and poly(N,N-dimethylacrylamide) (PDMA), gold nanoparticles (GNPs) were prepared and added into this quasi-IPN to form polymer/metal composite sieving matrices. The studies of intrinsic viscosity and differential scanning calorimetry (DSC) on quasi-IPN and quasi-IPN/GNPs indicate that there were interactions between GNPs and polymer chains. The sequencing performances on ssDNA using quasi-IPN and quasi-IPN/GNPs (with different GNPs concentrations) as sieving matrices were studied and compared by CE at different temperatures. The results show that resolutions of quasi-IPN/GNPs were higher than those of quasi-IPN without GNPs and approximated those of quasi-IPN composed of LPA with higher MW (6.5 MDa) and PDMA without GNPs in the bare fused-silica capillaries. Furthermore, the sequencing time of quasi-IPN/GNPs was shorter than that of quasi-IPN under the same sequencing conditions. The influences of GNPs and sequencing temperature on the sequencing performances of ssDNA were also discussed. The separation reproducibility of quasi-IPN/GNPs solution was excellent and its shelf life was more than 8 months.