Quinones are a class of natural and synthetic compounds that have several beneficial effects. Quinones are electron carriers playing a role in photosynthesis. As vitamins, they represent a class of molecules preventing and treating several illnesses such as osteoporosis and cardiovascular diseases. Quinones, by their antioxidant activity, improve general health conditions. Many of the drugs clinically approved or still in clinical trials against cancer are quinone related compounds. Quinones have also toxicological effects through their presence as photoproducts from air pollutants. Quinones are fast redox cycling molecules and have the potential to bind to thiol, amine and hydroxyl groups. The aforementioned properties make the analytical detection of quinones problematic. However, recent advances of the available analytical techniques along with the possibility of using labeled compound facilitate their detection hence allowing a better understanding of their action. This review summarizes the current knowledge with respect to the oxido-reductive and electrophilic properties of quinones as well as to the analytical tools used for their analysis. It includes a general introduction about the physiological, and therapeutical functions of quinones. A number of studies are reported to cover the chemical reactivity in an attempt to understand quinones as biologically active compounds. Data ranging from normal analytical methods to study quinones derived from plant or biological matrices to the use of labeled compounds are presented. The examples illustrate how chemical, biological and analytical knowledge can be integrated to have a better understanding of the mode of action of the quinones.