In this paper, a home service problem is studied, where a capacitated vehicle collects customers’ parcels in one pick-up tour. We consider a situation where customers, who have scheduled their services in advance, may call to cancel their appointments, and customers, who do not have appointments, also need to be visited if they request for services as long as the capacity is allowed. To handle those changes that occurred over the tour, a dynamic strategy will be needed to guide the vehicle to visit customers in an efficient way. Aimed at minimizing the vehicle’s total expected travel distance, we model this problem as a multi-dimensional Markov Decision Process (MDP) with finite exponential scale state space. We exactly solve this MDP via dynamic programming, where the computing complexity is exponential. In order to avoid complexity continually increasing, we aim to develop a fast looking-up method for one already-examined state’s record. Although generally this will result in a huge waste of memory, by exploiting critical structural properties of the state space, we obtain an O ( 1 ) looking-up method without any waste of memory. Computational experiments demonstrate the effectiveness of our model and the developed solution method. For larger instances, two well-performed heuristics are proposed.