Thirty-nine geminal dicationic ILs were synthesized and characterized in terms of their surface tensions, densities, melting points, refractive indices, viscosities, and miscibilities with a polar and nonpolar solvent. Two imidazolium or pyrrolidinium cations were joined via different length hydrocarbon linkage chains (from 3 to 12 carbons long). The various geminal dications were paired with up to four different anions. The effect of the dication type, linkage chain, alkyl substituents, and anion type on the physicochemical properties of these compounds was examined. Among the more interesting findings for this class of compounds was that their liquid and thermal stability ranges generally exceeded those of the more conventional, better known ILs. Indeed, this range was from −4 to >400 °C for one of the pyrrolidinium-based geminal dicationic liquids. Xray crystallography of the smaller solid ionic compounds indicated that there may be a correlation between the configurational degrees of freedom of the ILs and their melting points/glass transition temperatures. In one case, the crystal structure showed that a dicationic moiety had three distinct conformations in an asymmetric unit cell. The solvation properties of the geminal dicationic ILs tend to be similar to those of their monocationic analogues.
KeywordsCrystal structure, glass transition, hydrocarbons, liquids, melting, negative ions, refractive index, solubility, solvents, surface tension, thermodynamic stability, viscosity, x ray crystallography, pyrrolidinium cations Abstract: Thirty-nine geminal dicationic ILs were synthesized and characterized in terms of their surface tensions, densities, melting points, refractive indices, viscosities, and miscibilities with a polar and nonpolar solvent. Two imidazolium or pyrrolidinium cations were joined via different length hydrocarbon linkage chains (from 3 to 12 carbons long). The various geminal dications were paired with up to four different anions. The effect of the dication type, linkage chain, alkyl substituents, and anion type on the physicochemical properties of these compounds was examined. Among the more interesting findings for this class of compounds was that their liquid and thermal stability ranges generally exceeded those of the more conventional, better known ILs. Indeed, this range was from -4 to >400°C for one of the pyrrolidiniumbased geminal dicationic liquids. X-ray crystallography of the smaller solid ionic compounds indicated that there may be a correlation between the configurational degrees of freedom of the ILs and their melting points/glass transition temperatures. In one case, the crystal structure showed that a dicationic moiety had three distinct conformations in an asymmetric unit cell. The solvation properties of the geminal dicationic ILs tend to be similar to those of their monocationic analogues.