Functional coatings provide durability to the bulk material and add other value-added properties which enhance the surface's mechanical, electrical, optical, and many other properties. The functional response of these coatings stems from the ambiance, which can be made to sense in response to a sharp change in the temperature, pH, moisture, active ions, or mechanical stresses. Recently, many efforts have been made to impart multi-functionality within a single coating, i.e., to achieve hydrophobicity and antifouling characteristics, which can be achieved by combining an appropriate coating material with a geometric nanopattern. Such coatings are poised to shape the future of the transport, healthcare, and energy sectors, including marine, aeronautics, automobile, petrochemical, biomedical, electrical and electronic industries. This perspective sheds light on the design specifications and requirements to fabricate functional coatings and critically discusses the fabrication methods, working principles, and case studies to survey various applications with a particular focus on anti-corrosion and self-cleaning applications.