A closed-form solution is presented for the collective Marangoni-induced motion of a two-dimensional periodic array, or "flotilla", of Marangoni boats on deep water at zero Reynolds, capillary and surface Péclet numbers. The physical setup is identical to the model of Marangoni propulsion proposed by Lauga & Davis [J. Fluid Mech., 705, (2012)] but accounts now for interaction effects between boats, and in a simpler two-dimensional setting. The boats are modelled as identical thin floating strips each self-actuated by a trailing edge surfactant source that lowers the surface tension there according to a linear equation of state. The collective Marangoni propulsion speed of a flotilla of boats is found to be (2πµδ) −1 ∆σ log sec(πδ/2) where δ is the meniscus coverage fraction, µ is the subphase fluid viscosity and ∆σ is the surfactant-induced surface tension disparity across each boat. The theoretical result exemplifies the mechanism for collective rectilinear motion due to Marangoni convection caused by the diffusion of insoluble surfactant.