A large anomalous Nernst effect (ANE) is crucial for thermoelectric energy conversion applications because the associated unique transverse geometry facilitates module fabrication. Topological ferromagnets with large Berry curvatures show large ANEs; however, they face drawbacks such as strong magnetic disturbances and low mobility due to high magnetization. Herein, we demonstrate that YbMnBi2, a canted antiferromagnet, has a large ANE conductivity of ~10 A m−1 K−1 that surpasses large values observed in other ferromagnets (3–5 A m−1 K−1). The canted spin structure of Mn guarantees a non-zero Berry curvature, but generates only a weak magnetization three orders of magnitude lower than that of general ferromagnets. The heavy Bi with a large spin–orbit coupling enables a large ANE and low thermal conductivity, whereas its highly dispersive px/y orbitals ensure low resistivity. The high anomalous transverse thermoelectric performance and extremely small magnetization make YbMnBi2 an excellent candidate for transverse thermoelectrics.