Nano-size clusters are of great interest for understanding of fundamental properties and processes relevant for applied materials science such as heterogeneous catalysis. In this study, we present a newly developed dualtarget dual-laser ablation source, suitable for the production of binary clusters and their spectroscopic characterization. With the current design, an almost arbitrary mixing ratio can be achieved by altering different parameters such as the laser fluences. Boron and silicon targets are chosen for cluster production, illustrating the possibility to control the outcome ranging from pure boron over mixed SinBm to pure silicon clusters. As a test system, Si6B clusters are characterized by means of infrared-ultraviolet two-color ionization (IR-UV2CI) spectroscopy, combined with quantum chemical simulations. The most stable structure of Si6B (Cs, 2 A') predicted in our previous work is confirmed by the present experiment. Doping of Si7 with a single B atom has a drastic impact on the geometric, vibrational, and electronic properties.