In the current study, Zinc oxide (ZnO) thin films have been synthesized over the whole the glass-slide substrate by utilizing the physical vapor deposition (PVD) technique. The Zinc (Zn) seed layer was deposited by heating the high purity Zn powder by using a molybdenum (Mo) boat at 37.503×10-3 Torr vacuum pressure of the PVD chamber. The ZnO thin films were fabricated by oxidation of the Zn seed layer coated glass-slide substrate at 400 °C. The morphological, chemical compositions, crystal quality, structural and optical properties of fabricated ZnO thin film were characterized and studied utilizing several characterization techniques. The results found that the high distribution density, homogenous, uniform, and high-quality ZnO thin film was grown over the entire substrate. The synthesized ZnO thin film with a thickness of 130 nm was grown with high purity and polycrystalline hexagonal-Wurtzite phase of ZnO. The sharp, and dominant diffraction peak was observed at peak position 34.3375 along (002) plane and c-axis. The investigated crystal size, dislocation density, and interplanar spacing were about 13.33 nm, 5.63×10-5 A°, and 2.609 A°, respectively. Also, UV-visible spectroscopy results show the high transmittance and low absorbance in the visible (Vis.) region and were about 90%, and the transmittance decreases sharply near the UV region at a wavelength around 383 nm. Besides, obtained the energy band-gap (Eg) was about 3.24 eV.