2015
DOI: 10.1063/1.4937107
|View full text |Cite
|
Sign up to set email alerts
|

Time series regression and ARIMAX for forecasting currency flow at Bank Indonesia in Sulawesi region

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
3

Year Published

2017
2017
2023
2023

Publication Types

Select...
4
2

Relationship

1
5

Authors

Journals

citations
Cited by 7 publications
(7 citation statements)
references
References 4 publications
0
4
0
3
Order By: Relevance
“…In our case, we are going to focus on modelling the contagion in Jaén in two different ways. The first approach is based on the Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model [1] which, we found, provides better performances than the Autoregressive Integrated Moving Average (ARIMA) (on the same line, see also [2][3][4][5][6]). This is a common model in time series forecasting and is often adopted in finance [7][8][9][10].…”
Section: Introductionmentioning
confidence: 94%
“…In our case, we are going to focus on modelling the contagion in Jaén in two different ways. The first approach is based on the Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model [1] which, we found, provides better performances than the Autoregressive Integrated Moving Average (ARIMA) (on the same line, see also [2][3][4][5][6]). This is a common model in time series forecasting and is often adopted in finance [7][8][9][10].…”
Section: Introductionmentioning
confidence: 94%
“…Regresi deret waktu adalah regresi berganda yang diterapkan untuk menganalisis hubungan antara variabel dependen , 1,2, , [10,11]. Bentuk umum dari regresi deret waktu dengan variasi kalender yang memuat tren t dan pola musiman dinyatakan pada persamaan (2), yaitu…”
Section: Regresi Deret Waktuunclassified
“…Wei [13] mengusulkan teknik identifikasi melalui struktur otokorelasi pada plot ACF untuk mengetahui eksistensi pola musiman. Muhammad Luthfi Setiarno Putera Model ARIMAX (ARIMA with Exogenous) merupakan pengembangan ARIMA dengan keterlibatan variabel independen (kovariat/X) untuk memodelkan variabel Y [11]. Penelitian ini menawarkan beberapa variabel dummy dan variabel kontinyu yang mewakili tren deterministik.…”
Section: Model Arima Dan Arimaxunclassified
“…Dalam [13], ARIMAX dapat meningkatkan akurasi peramalan regresi deret waktu maupun ARIMA. ARIMAX merupakan model deret waktu ARIMA yang dikembangkan dengan melibatkan variasi kalender sebagai variabel penjelas (independen) [1]. Akurasi peramalan dapat ditingkatkan dengan mengkombinasikan aspek linier dalam ARIMAX dan aspek non-linier.…”
Section: Pendahuluanunclassified