General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
AbstractCarbon fiber reinforced plastic (CFRP) and titanium alloy stacks are typical difficult-to-machine materials and often results in rapid tool wear, leading to a low drilling efficiency in aircraft assembling. Helical milling process has demonstrated its superior performance in making holes in these materials, but selecting a proper cutting tool is still a great challenge and little research has been carried out to investigate the effect of different coatings on tools performance. Therefore, in this paper, milling tools with and without coatings (diamond coating, TiAlN+AlCrN multilayer coating and TiAlN coating) were employed in helical milling of Ti/CFRP stacks. The cutting performance and the degradation mechanisms of these milling tools were investigated in details. It is found that, uncoated tools demonstrate the best cutting performance with lowest cutting force, highest hole quality and slightest tool wear. Degradation of nitride coated tools is due to the combined effects of increased roundness of cutting edge and the strong dependence of cutting performance on the tool sharpness. Diamond coated tools showed the greatest degradation, which has been attributed to the low materials ductility at tool cutting edge, weak adhesive strength between the coating and substrate, and the poor thermal resistance of the diamond coating.