Cannabidiol (CBD) is a promising natural agent for treating psoriasis. CBD activity is attributed to inhibition of NF-kB, IL-1β, IL-6, and IL-17A. The present study evaluated the anti-psoriatic effect of cannabidiol in lipid-stabilized nanoparticles (LSNs) using an imiquimod (IMQ)-induced psoriasis model in mice. CBD-loaded LSNs were stabilized with three types of lipids, Cetyl alcohol (CA), Lauric acid (LA), and stearic-lauric acids (SALA), and were examined in-vitro using rat skin and in-vivo using the IMQ-model. LSNs loaded with coumarin-6 showed a localized penetration depth of about 100 µm into rat skin. The LSNs were assessed by the IMQ model accompanied by visual (psoriasis area severity index; PASI), histological, and pro-psoriatic IL-17A evaluations. Groups treated with CBD-loaded LSNs were compared to groups treated with CBD-containing emulsion, unloaded LSNs, and clobetasol propionate, and to an untreated group. CBD-loaded LSNs significantly reduced PASI scoring compared to the CBD emulsion, the unloaded LSNs, and the untreated group (negative controls). In addition, SALA- and CA-containing nanoparticles significantly inhibited IL-17A release, showing a differential response: SALA > CA > LA. The data confirms the effectiveness of CBD in psoriasis therapy and underscores LSNs as a promising platform for delivering CBD to the skin.